skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gorczyński, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Photomediated Atom Transfer Radical Polymerization (photoATRP) is an activator regeneration method, which allows for the controlled synthesis of well‐defined polymers via light irradiation. Traditional photoATRP is often limited by the need for high‐energy ultraviolet or violet light. These could negatively affect the control and selectivity of the polymerization, promote side reactions, and may not be applicable to biologically relevant systems. This drawback can be circumvented by an introduction of the catalytic amount of photocatalysts, which absorb visible and/or NIR light and, therefore, controlled, regenerative ATRP can be performed with the dual‐catalytic cycle. Herein, a critical summary of recent developments in the field of dual‐catalysis concerning Cu‐catalyzed ATRP is provided. Contributions of involved species are examined mechanistically, followed by challenges and future directions towards the next generation of advanced functional macromolecular materials. 
    more » « less
  2. null (Ed.)
    ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N -isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr 2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights ( M n > 270 000), and low dispersities (1.16 < Đ < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP ( Đ = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system. 
    more » « less
  3. Abstract Reversible‐deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic–inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area. 
    more » « less
  4. Abstract Simple synthetic routes to regioselectively deuterated tris[2‐(dimethylamino)ethyl]amine (Me6TREN) variants are described. Imine formation with formaldehyde‐d2from tris(2‐aminoethyl)amine (TREN) and subsequent reductions with NaBD4afforded N[CH2CH2N(CD3)2]3ord18‐Me6TREN in 79 % yield. A trisubstitution protocol from 2‐bromo‐N,N‐dimethylacetamide and ammonium carbonate and subsequent reduction of the N(CH2CONMe2)3intermediate by lithium aluminum deuteride has afforded N[CH2CD2N(CH3)2]3or (d6‐arm)‐Me6TREN in three steps and 52 % overall yield. A similar protocol from 2‐bromo‐N,N‐dimethyl‐d2‐acetamide, obtained in two steps fromd4‐acetic acid, with reduction of the N(CD2CONMe2)3intermediate by lithium aluminum hydride has afforded N[CD2CH2N(CH3)2]3or (d6‐cap)‐Me6TREN in four steps and 13 % overall yield from CD3COOD. 
    more » « less